
sue ’ Fermi National Accelerator Laboratory

TM-1679

CANVAS: C++ Objects for Easy Graphics on an Evans &
Sutherland PS390 Terminal.

User’s Guide

Leo Michelotti and Richard Kick
Fermi National Accelerator Laboratory

P.O. Box 500
Bataviu, Illinois 60510

August 27,199O

+b 0 orated by Unlver~illes Research Association Inc. under contract with the United Staler Department of Energy

CANVAS: CSS objects for ea,sy graphics on an
Evans & Sutherland PS390 terminal.

User’s Guide

Leo iUichelotti Richard Kick

August 27, 1990

1 Introduction

The Evans and Sutherland PS390 terminal which resides in the X-Gallery HiBay area is a powerful, sophis-
ticated graphics engine whose price/performance ratio approaches infinity because practically no one uses
ii.’ The reason for this lack of enthusiasm is obvious: no self-respecting scientist still of sound mind would
willingly choose to read, much less assimilate, the seven-volume set of manuals that accompanies this device.
The information buried in those volumes is, of course, essential for programming the PS390 to do all the
sophist,icat,ed things it is capable of doing, such as creating automobiles with doors that open and close and
steering wheels which move synchronously with the front tires, all at the turn ofa knob. Regrettably, doing
simple things, such as viewing three-dimensional magnetic fields, is no easier than doing the most complicated
~nes.~ There is at least one brand of third party software available for viewing data. but it requires specially
formatted data files, it does not allow for data interaction, and as is usually the case with self-contained
programs, it invariably does not do the one or two tasks needed for a given application. Anot,her approach
was used by Fermilab’s Computing Division in writing a DI-3000 device driver for the PS390 terminal. This
was a valid and useful project, but it must have been like trying to lit a square peg into a round hole. The
PS390 is Phigs-like in its graphics protocols while DI-3000 is based on ACM Core, which was devised when
graphics was viewed primarily as a means of drawing pictures rather than interacting with data.

The C-+ classes described in this note comprise an attempt to provide an object-oriented approach,
and if there was ever a graphics terminal naturally suited to object-oriented programming, the PS390 is it.
Since a canvas is not a program but a variable to bc used in programs, users can write software to suit their
particular needs. By simply declaring canvas variables the application program is provided with an object
which accepts data and displays it automatically. Any number of canvases con be placed anywhere on the
screen, so data can be viewed in a variety of ways simultaneously. Further, the “real-time” transformation

1 An crcc”cnt Macin,o.h rommcrcia, *,a3 &v&pcd along ,hc.e hr.. Two cxccutives are &ru.ring how to cvaluatc hardrsrc
pc’f”rma”Ec. 0°C ‘“ggcrts ,ha, ,hc anever licr in counting “mcgaRups “1 megahertz r<lmcthing Likr that.” The other rountcrs
that an easier way ir to obrcrvc which computer pcoplc USC mart frcqucntly. When the firrl objects that thr criterion is not
fair bcc.3u.c people like tn “se a Macintosh hc rCCCi”CI a withering lank, S”@CdiVC of scvcrc rcductionr in prqxctr fur future
promolion.

ZPerhapr this is just the negative way of saying that rom$icatcd graphics ir no harder than rimplr grephirs.

1

capabilities of the PS390 are activated in one step by “connecting” its external devices, the dials and the
puck, to the desired canvas. There is no need for the applications programmer to construct his own function
networks, choose names for nodes, and do any of the other administrative tasks laid out in the manuals,
including connecting the terminal to a host computer and initializing it. These are handled automatically
by the canvases themselves, thus removing this clutter from the application program.

This User’s Guide is arranged as follows. We offer in Section 2 four sample programs which illustrate the
simplest usage of the canvas variables: canvas3d, canvas2d, and canvasRas. This is follwed by a description
of (currently) available methods in Sections 3 and 4, the former dealing with object-orinted graphics and the
latter with raster graphics. What will be described is a minimal, “bare bones” implementation which WC hope
will be useful to anyone who wants an easy way to explore three-dimensional data without frills. It is not our
objective to attempt, single-handedly, to provide an Interviews package for the PS390.3 However, features
sill continue to be added slowly as needed, especially with regard to (a) locatr, pick, and identify functions.
(b) three-dimensional cursors, (c) ready-to-use graphics objects, such as beamLine or suriacs, (d) new types
of derived canvases, such as stripchart, nwnu, or tunsDiagram, and (e) construction of a canvas4d class.
For those who might want to use these variables and their methods libraries and documentation can be found
in the area ALMOND: :USR$DISK~: CMICHELOTT.PWLIC.CANVAS~.

2 Sample programs

The first two programs in this section were suggested by colleagues in Accelerat,or Division; the ol,her two had
no motivation other than to illustrate the usage of canvas variables. Almost, complet? listings we provided,
but for our purposes; it is certainly not necessary to understand all their details. We shall walk through the
important, highlights of each.

All of these sample programs are available to anyone who might want, to play with them to see nhat
they actually look like on the screen. Simply (i) walk up to the XGal Hi Bay \leazanine and log into your
ALMOND account using the PS390 terminal; (ii) browse through the- demo names by doing

0 DIR ALM~ND::~~R$DI~~~:[MICHELOTT.P~LIC.CANVAS.DEMOSI*.DEI~O;

and (iii) invoke a demo with

S OALMOND::USR$DISK4:~MICAELOTT.PUBLIC.CANVAS.DEPIOSl<namc>.DEMO

where < nome > is the name of one of the demos seen in Step (ii). Further, it is possible to make hardcopies
of the PS390 display (with th e exception of canves~as images) by entering

s OALMOND::USRSDISK~:CMICHELOTT.PUBLIC.CANVASIHA~COPY

at VMS system level. A PostScript file named PSHOO.DAT will be written into your default directory.

2.1 Data from files

This first program merely reads three-dimensional data from a wt of files and displays them in a can~as.~
Each file contained one-day temperature profiles at one of twenty-four stations around the ring. Each line

31ncidcntdty, tllc L¶ct that our class has the Iam< name a5 that urcd by SUN p%phicr is purely a coincidcnrc and is “0,
“Ican, 10 suggest uly cOTrc5pO”dcncc.

4Thc pr0gre.m in this rcrtion war r”ggFILrd by Waker Kisrrl.

2

contained a (lime, temperature, station) triplet, and it was desired to display these as twenty-four different-
colored CUIWS. The namt~ of all the data files were written into a separate file for program access.

We shall mark the important features of this program, flagged by their line numbers:

line 6: The canvas resource file, eanvas.rsr, must be included before any canvas variables are dc-
clued and must have file scope, that is, it must be included outside of all “{ .)” brackets (the most
logical place being near the top of the file, as shown here). This header can be read from the area
ALMOND::USR\$DISK4:~MICHELOTT.PWLIC.AEADKKSl.

line 11: A number of forms are available for declaring canvas variables. This one employs two character-
string arguments to instance pit, a three-dimensional canvas. The first argument specifies how graphics
transformations are to be carried out; we shall put off its detailed explanation to Section 3.1. The second
requests a parallel, rather than perspective, projection from the three-dimensional “world” of data into the
screen; perspective projections are the default.

lines 13-20: This fragment of code serves the dual purpose of placing axes within the canvas and alerting
it to the data ranges it can expect. Each data file contains a 24 hour temperature profile at one of the the
24 stations around the ring. We choose temperature to br the a-axis, while “hour” and “station” will be the
other two. The array minmax indicate the minimum and maximum valuer associated with each axis, while
delta specifies the spacing between tic marks.

lines 22-25: Anticipating the desire to look at the data from various views, the PS390 dialbox is con-
neeed to the canvas’s transformation “nodes.” There are three basic data transformations which can be
carried out: rat,ations, dilations, and translations. These statements will allow the first three dials to control
rotations in three independent directions, th? fourth, dilation (which is uniform in all three directions), and
the last three. translations. Dial 5 is not connected to anything.

lines 8, 33: Names of the data files are contained in a separat,e file, whose name will appear in the
command line invoking the program, as in

0 kiss-al namsfils.det

lines 37-54: These two while loops form the core of the program. The first, reads the names of the
data files, the second, the data. The temperature profiles are modelled as wireframes with the functions
.startFrame (line 45), which initializes a wireframe, and .addTofiame (line 49), which continues it. Since
transform&ox have already been connected, the dialbox can be used to manipulate the image 03 if ir being
drawn.

line 53: It frequently happens at the end of a program that the last few data points sent to e. canvas do
not reach it because the Ethernet buffers have not been filled. The method .purgeBuffflushes these buffers
and assnres that all the data are displayed.

lines 58-61: Finally, we delay leaving the program. Upon exiting, canvas destructors are invoked, and
they reset, the PS390, destroying all the objects which have been created. Without the delay, this would
happen before the use1 had a chance to examine his data. If it is desired to exit a program urhilc leaving the
objects intact to make a hard copy of the screen, for example then exit disgracefully with a -Y.

i-.~-.-...--
PROGRAM LISTING]

1 *include <stddef.h> II These two statments sideline
2 *include <armo.h> I/ annoying compiler warnings
3 I/ about PSECT ERRNO

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

ninclude Cstdio.hrx~

#include "canvas.rsc"

main (int arghlum. char *filaListCl) I

// Declaring the canvas variable
canvar3d pit ("OOW", "orthographic") i

/I Setting up the axis system
double delta[31 ;
double minmax [61 ;
// . .._ x _..._.. -_------ y ------ --_--_ = ..-...-
minmax[Ol = 1.0; millmar[21 = 1.0; minmar[41 = 60.0;
minmax[l] = 24.0; minnmx[31 = 24.0; minmar[51 = 120.0;

deltalO = 1.0; delta[ll = 1.0; deltam = 10.0:
pic.makeAxee(mimax. delta);

I/ Connect transfomations to dials
pic.connlot (1, 2, 3);
pic.cannScale (4);
pic.connTrans (6. 7, 8);

// Finally, read and display the data
FILE *dataFile:
FILE *nameFile;
char namsOfDstaFile[80 I;

nameFile = fopen(fileLiat[ll, 9"):

char firsthint = 1;
double time. temperature, station;
while (fscanft namefile, "%s", nameOfDataFile) != EDF) t

dataFile = fopen< nameOfD)ataFile, "I");
while (fscmf(datafile, we 7.1s me",

ttims, PItsmperature, kstation
)

!= EOF
) t

if (firstPoint) I
pic.startFrame(station, time, temperature);
firstPoint = 0;
continue;
I

pic.addToFrme(station, time, temperature) ;
I

4

51
52
53
54
55
56
57
58
59

61
62

fclose(dataFile);
firstPoint = 1;
pic.purgeBuff 0;
>

fclose(nameFile):

/I Delaying program exit __.....................
char dumyString[80 1;
printf (“\nPress RETURN to exit the program.\n”) i
gets(dummyString) ;

2.2 Eyeball curve-fitting

It frequently happens that one would like to fit to data from a parametrized family of curves, not by using
automated (least, squared error) methods but simply by looking at the curves and playing rith the parameters
until a decent fit is achieved at localized regions of interest. The program 1istPd below enables this typv of
“explorat~ory data analysis.“5

lines 16-17, 146-157: This program had an interesting problem associated with ii. I wanted two two-
dimensional canvas variables with file scope on the screen simultaneously. However, thr declarative forms
employed (lines 151 and 156) could be used only from within a function The solution was to declare
pointers to canvases (lines 16 and 17) which are assigned values after the canvase are declared (linrs
152 and 157). This illustrates strongly that a C+i class acts completely like the original variables of the
language.

Locations of the canvases on the screen are specified by two arrays, 1% and lb, which contain “normalized
screen coordinates” - lying within &I of the right-top and left-bottom corners. Thus the canvas fit is to
be centered vertically and occupy the left halfof th e screen, while rssid will occupy the right half, (Compare
lines 151 and 156 with line 11 of t,he preceding section.)

lines 159-165: After the canvases have been declared, t,ranslation nodes are connected to dials, as before.
We are not interested in rotations for this application.

lines 172-176: The file cclntaining (2,~) coordinate pairs is read and the data stored in two arrays. Line
176 contains one of those multi-purpose statements that non-C programmers sometimes find confusing. It
simultaneously (a) reads the data file, storing one pair at a time, (h) counts the number of pairs stored, and
(c) terminates when the end of file is reached.

lines 178.211: Then comes a block of code which makes an initial estimate for the parameters of a
gaussian model from the data’s statistics. Since it is not of interest: in the context of this document, we
have omitted it.

lines 213-224: As in the previous example, axes are established, one for each canvas. The vertical axis
parameters are different for t,he two windows, since fit is to display the data themselves, nhile rssid will
contain the display of residuals from the gaussian model.

~The prOgram in this section was Iu~gcrtcd by Craig Moore. -

5

lines 227-240: Three objects are to he plotted in the two cauvases: the scattrrplot of (z,y) coordinate
pairs, the gaussian curve through those points. and t,he set of residuals. These are respectively given the
tokens, already declared as char* variables in lines 13-15, ofdataGraf, curve, and residuals. dataGraf is
plotted using the methods .startPts, to initialize, and .addToPts, to complete the display (lines 228.229).
The methods .startFrame and .addToFrame implement the display of curve and residuals as wire-
frames. The colors are chosen from a template made available by c~nvas.rsc: BLUE; MAGENTA, RED, YELLOW,
GREEN and CYAB. Other colors can be obtained by linear interpolation, 8s in “0.3*BED + 0.7tYELLOW.”
The loop beginning at line 235 finishes the wireframes. h’ote that in addition to .addTofiame, the plot of
residuals makes use of a method .joinToEhme (line 237). Th’. 1s enables residuals to br construct,ed from
disconnected pieces, while curve is a completely connected wireframe.

lines 8, 242-249: The C++ class ttMsnu was written some time ago and is convenient for writing
programs with interactive steps. Its usage should be obvious from t,he context.

lines 64-141: ‘The functions abschange (lines 64fT) and relCbangr (lines 103ff) simply allow the
use, to alter the parameters of the gaussian either directly or by choosing multipliers 01 summands. The
details are not of interest, except JOT lines 9R and 138: after changes are made> the two objects CUTYO and
residuals are redrawn

lines 49-62: using the function reDrew(). After the old versions are erased from the canvases using
.remove (lines 51-52), the new ones are put in their places: lines 53-61 almost exactly duplicate lines
232-241, in which these objects were originally drawn. The principal difference is that reDraw uses the
pointers fitptr and IssidPtr to refer to canvases.

lines 22-41: This block ofcode simply con&ins the gaussian function which is to be used as the family of
curve5 for the fitting. The user will be able to manipulate four parameters (lines 27-30) in order to achieve
a “good” fit.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

*include <stddef.h>
ainclude <errno.h>
*include <stdia.hrx>
#include <stream.hxx>
#include <math.hxx>

#include “canvas .rsc”
#include “[michelott.cpp.headerslmenu.hxx”

ddef ine MPXDdTd 256
const double twoPi = 6.2831853072;

char* d.taGr.f;
char* CurYe;
char* residuals:
canvasZdr fitPtr;
canvas?d* reaidPtr:
double x [MAXDATAI , y [MAXDATA] ;
int mm;

6

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

,, ***********t****************
//
// Gaussian distribution to be used in fitting
//

double gsdverage = 0.0;
double gsSigma = 1.0;
double gsNarmalization = 1.0;
double gsPlatform = 0.0;

double gaussian (double u) {
double w;
double arg;
arg = (u - gs*verage) / gsSigma;
arg = - 0.5 * arg * arg;
w = exp(arg) / (sqrt(twdi) * gsSigma);
u *= gdtormalization;
w += gsPlstform;
return w;
I

,, *********t****
//
// Manipulation routines in mainMenu
//

void reDraw 1
int i;
fitPtr -> remove(curye 1;
residPtr -> r~nmve(residuals) ;
ClmPB = fitPtr -> startFrame(x[Ol, gaussian(XL01), RED
residuals = residPtr -> stertFrme(x[Ol, 0.0. YELLOU

residPtr -> addTaFrme(x[Ol. y[Ol - gaussian(r[Ol 1
for (i = 1; i < mm; i++) t

fitPtr -) addToFrame (x[il, gaussian(r[il));
r*sidPtr -> joinToFr.ms (x[il. 0.0);
residPtr -> addToFrme (x[il, y[il - gaussim(xii1) 1;
I

fitPtr->purgsBuffO;
1

void absChange0 {
int choice;
double value:

1:
);
1:

68 start:

94
95
96
97
98
99
100
101
102
103
104

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

156
1.57
158
159
160
161
162
163
164
165

<CC lines 69-93 omitted >>>

default:
break;

)

reDraw ;
got0 l3tart;

void relChmge0 {
in* choice;

(c-c Lines 105-136 omitted)>>

rdkauo ;
goto start ;

1

main (int arghlum, char *fileNamsCl) I

// Declaring the canvas variables
double rt[Zl, lbD1;
II --------x -------...-...y
Ib[Ol = -1.0; lb[ll = - 0.5;
rt[01 = 0.0; rt[11 = 0.5;
canvasZd fit (rt, lb, "YWM") ;
fitPtr = Hit;
I/
lb[Ol = 0.0; lb[ll = - 0.5;
rt[01 = 1.0: rtr11 = 0.5;
canvas2d resid (rt, lb, "Wu");
residPtr = liresid;

// Comect trensformationb to dials
resid.comScels (1, "Scale" 1;
resid.connTrans (2, "Horiz",

3, ""ert") ;
fit.connScale (5, "Dilation" 1:
fit.connTrma (6, "Horiz",

7, ""ert") ;

166
167
168
169
170
171
172
173
114
175
176
177
178
17s
180

210
211
212
7.13
214
215
216
21,
218
21s
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

// Reading data from the file

FILE* xyFile;
in* i;

xyFile = fopsn(fileNams[ll. "3" 1;

// Read the data file
nllm = 0;
whils(fscmf(*yFile. "YJf 7X", x + num, y + nun 1 != EOP 1 nun++;

// Find data scales
double rmin = XL01 ;
double xmax = x101 ;

<CC lines 181-209 omitted >>> .._.__.

gssigma = sigma;
gsNormalizat.ion = sq*t(twoPi 1 * sigma * (ymax - ymin);

// Setting up the axis system .._..,,..,,.,,
double deltaI21, minmar[41;

// _.._..-------- x ----Y
mimax[O] = rmin; minmaxC21 = ymin;
minmax[l] = xmax; minmax[Sl = ymax;

delta101 = deltalll = 1.0;
fit.makeAres(minmar, delta);

minmaxL21 = - 1.5;
minmax[31 = 1.5;

delta[l] = 0.25;
resid.makeAxesC minmax, delta);

// Plotting the data
detaCraf = fit.startPts(x[Ol, y[Ol, YELLOW 1;
far (i = 1; i < num; i++) fit.addToPts(xCi1, y[il 1;

/I Plot the initial curve
curye = fit.startFrame(x[Ol, gaussian(x[Ol). RED);
residuals = resid.startFrame(xlO1, 0.0, YELLDW);

resid.addToFrame(x101, y[Ol gaussian(x[Ol 1);
for (i = 1; i < nun; ii+) I

fit.addloframe (x[il, gaussian(x[il));
resid.joinTaframe (x[il, 0.0);
resid.addToframe (r[il, y[il gsussian(x[il));

9

239 1
240 fit.pugeBuffO;
241
242 /I Activate the menu _.._.
243 **Menu mainMenu;
244
245 mainMenu.setPrompt~ "PLIZYFIT ..> ");
246 mainMsnu.setItem("Absolute change of parameters.", absChmgs);
247 mainMenu.setItem("Relative change of parameters.", ralChmge);
248
249 mainMenu.goO ;
250
251 >

2.3 Fields

In addition to wire frames and clusters, canvases recognize vector fields ~5 representable objects. The program
below samples an electric dipole field at random points.

lines 23-38: A canvas variable is declared and customized more or less as in Section 2.1 except that
“orthographic” uirw is not requested, which means the display will be in perspective.

lines 45-52: The method .startVF initializes the vector field display. In the loop, getFieldAtPoint
chooses a point randomly and calculates the field at that point. These are loaded respectively into the arrays
x and E. Then, .addToVF (line 51) incorporates these new samples into the diagram as they are calculated.

1
2
3
4
5
5
7
8
9
10
11
12
13
14
15
16
17
18
1s
20

*include <stddef.h>
#include <ermo.h>
#include <stdio.hxx>
*include <meth.hxr>
*include "canvas.rsc"

extern double ranO(intr);

double xt31. aI31, bD1, EM;
in* j;
in* ranSeed = -9:
void getFieldAtPaint0;
inlins void getNertPoint0 {

for(int k = 0; k < 3; k++) x[kl = - 8.0 + 16.0 * (ranO(transeed));
)

main0 I

cons* in* samples = 2500;
in* i;

10

21
22
23
24
25
26
27
28
2s
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
4s
SO
51
52
53
54
55
56
57
58
5s
60
61
62

char* dipolefield;

canvas3d picture ("OYM");

// Put axes into the picture
double mimax[31;
double deltaC31;
/I ---- x ---------y ----.._._E
mimxC01 = minmar121 = minmax[41 = - 5.0;
mimaxC11 = minmar[31 = minmax[51 = 5.0;
delta LOI = delta [I] = delta [21 = 1.0;
picture.makeAxes(mimar, delta, RED);

/I Connect transformations to dials
picture.comRot (1, 2, 3);
pictura.cormScale C 4);
picture.connFrm (5);
picture.cannlrans (6, 7. 8 1;

// S*t positions of the two sourc*s
I/ ___- I(---------- y ---------.__ z
.?.[Ol = 0.0; a111 = 0.0; a[21 = 0.5;
b[Ol = 0.0; b[ll = 0.0; b[21 = - 0.5;

/I Main loop .._.._._.____.._..._...........,.
gatFieldAtPoint0;
dipoleField = picture.startVF(x, E 1;

for (i = 0; i < samples; it+) {
gttFieldbtPoint0;
picture.addToVF(X, E);
t

picturs.purgeBuffO;
// Delaying program exit ,_..,.....,,..,.,,._..
char dmyString[SO 1:
printf("\nPress RETURN to exit the program.\n")
gets< dmystring 1;

void getFieldAtPoint0 t

<<< lines 63-86 omitted >>>

87 >

11

2.4 Fractals

A third flavor of canws available for immediate use is canvasRas, a two-dimensional canvas designed for
pixel operations: specifically, for scanning a region in R2 and coloring pixels according to a user-specified
algorithm. This is a useful technique for creating contour plots and is indispensable if one wants to become
rich and famous, especially rich, by publishing fractal images.’ The program shown below mixes a canvas3d,
in which is plotted the Lorenz attractor, with three canvasRas variables, in which are displayed various
portions of the Mandelbrot set.

lines Q-10: The external function lorenz propagates an orbit obeying Lorcnz’s differential equation,
while mandalbrot determines the RGB color code of points in C 2 R2 based on the number of iterates of
the complex function f(z) = z2 + c which ‘Lsurvive.” We need not concern ourselves with their details here.

line 22: The last component of positioning arrays rtf and lbb, which appear in instancing the (hree-
dimensional canvas lorsnzCnv, specify positions for the forward and backward clipping planes. These are
used in conjunction with depth cueing on the PS390: points which are “farther away” from the observer are
made to appear dimmer. The first two components locate the canvas on the screen, as in lines 151 and IS6
of Section 2.2.

lines 40-50: An orbit of the Lorenz equation is modelled as a wire frame beginning at the point (0, 1,O).
Over five thousand time- steps are taken. Since the transformation nodes hare been connrcted prior to this,
in lines 35.38, the user can manipulate the attractor while it is being constructed.

lines 81.87: Three regions of the Mandelbrot set will be displayed in raster canvases, whose declarations
include arguments rt and lb indicating where they are t,o be placed on the screen, exactly as with canvas~d
and canvas3d variables. The .setX and .setY functions then determine thr domain in R2 to be associated
with each one: after which .scan tells the canvas to scan its domain using the RGB color-coding function
named in the argument. mandelbrot.

INGRAM LISTINGS

I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <atddtf.h>
#include <ermo.h>
trinclude <complex.hrx>

#include "can~as.~sc"

/I Declaring functions which generate Lorenz's attractor

// and the Mandslbrot set............................
extern void lorenz (doublet. doubler, doubler);
extern void mandelbrot (double+. doublet, in**. int*, intr);

main0 I

,, ++++++++++++++++++++++++++++++++++++++*+++++++++++++
// Work begins here on the Lorenz attractor

'1 am told that thr cumcnt rate for e single Iracral "project"in the sdvcrtiaing industry is about 8150,000. At Icart, ~bk is
the price chargrd by a fractal pioneer who harlclt arsdcmi. to devote hj,,,,lC,l-time ,o,hrrc rorthwhilr purrti,s.

12

17
18
19
20
21
22
23
24
25
25
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// Declaring the canvas variable .._._.._._.._..
double rtf [31, lbb[Jl ;
/I -.._-------I -------------
lbb[Ol = -1.0; lbb[ll = -0.;;

e
lbb[21 = -1.0;

rtf[Ol = 0.6; rtibl = 1.0; rtf t21 = 1.0;
canuas3d lorenzCnv(rtf, lbb, “OWO”) ;

// Setting up the axis system _.__..._..,..,...
double delta [31 ;
double mimax 161 ;
// ---- x . ..- Y -...-... 2
minmax[Ol = minmar[Zl = minmaa[41 = - 50.0;
minmax[ll = minmax[31 = minmax[51 = 50.0;

delta[Ol = delta111 = delta[ll = 5.0;
lorenrCnv.makeAxes(mimsr, delta, YELLOY) ;

// Connect transformations to dials ..___.__
loreneCnv.connBot (1, 2, 3);
lorenrC”“.connlcale (4 1;
lorenrCn”.connTrans (5, 6, 7):
lora”zcn”.connFrom (8);

// Set initial conditions and launch the orbit .,_
double x = 0.0;
double y = 1.0;
double e = 0.0;

char* attractor:
attractor = loren.zCn”.htartFrame(x, y, z, RED):
for (int timeStaps = 0; timeSteps < 5500; timeSteps++) I

larenz(FLY, ky, tz 1:
loreneCn”.addT’aFrme(x, y, e);
I

,, ++++i+++i+ft++++t++i++++++++++++~~~++~~+++++++++++~~
// Work begins here on the Mandslbrot setb

// Declare five rcmter canvases in which v* shell scan
// various pieces of the Mandelbrot set.

double x-t 131 [21 ;
double lb[31 121;
// --------------x ----------...-..y
1bC01101 = 0.6: Ib[Ol[ll = - 0.2;
I-t101 co1 = 1.0; rt[01[11 = 0.2:
,/~..~~__. ------------------

13

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

3

lb[ll lOI = 0.6; lb[ll[ll = - 1.0;
rtm co1 = 1.0; rt[l][Il = - 0.6;
,, -_~~...--------- --.-_-_-----------

lb[Zl[Ol = - 0.2; lbDl[ll = - 1.0;
rt[21 [Ol = 0.2; It[21[11 = - 0.6;

double r~o[Jl, rHil31, yLo[31, yHiD1;
xLo[Ol = -1.7935; xHi[Ol = -1.7365;
yLoCO1 = -0.0285; yHi[Ol = 0.0285;
// -----_.~----------....._-----

XL0Ul = -0.96; rHi[ll = -0.89;
yLo[ll = 0.23; yHiU1 = 0.30;
,, -----~-~-------- .-...-...-~__-----

xLoC21 = -0.94; xHil21 = -0.89;
yLoC21 = 0.24; yHil21 = 0.29;
,, --_..~.--------- -..._-_-----------

canvasRas* mandelCn.,:
for (int i = 0; i < 3 ii+) {

mandelCnv = new canvasRas(t(rt[il CO1), L(lb[il [Ol));
mandelcnv -> sstX(xLo[il, xHi[il) i
mandelCnv -> s&Y< yLo[il, yHi[il);
mandslCnv -> scan(mandalbrot);
1

/I Delaying program exit
char dmmyString[80 1 ;
printf (“\nPress RETURN to exit the program.\n”) ;
gets< dummyString 1 ;

I

Object-oriented graphics

In order to reduce the amount of space needed to list methods available to canvas variables, we have adopted
a limited form for indicating options. Using this notation the line,

{ classA 1 classB }::nlth(double 431, [int* y ,] char’ z [, double t [, int w]])

means that the method .mth is available both to classA and tu classI using one of the followirlg argument
lists:

(double xC31. char* z 1,
(double xC31 , int* y. char* z, double t), or
(double xc31 , int* y. char* z, double t, int F)

However, (double xC31, intt y. char* z) would not be allowed: unless ot,herwise indicated, all op-
tions at the same depth go together.

3.1 Declarations

canvas3d::canvas3d ([char* m [, char* Y]])
::canvas3d (double rtfl3], double Ibb[3] , char* m [, char* v])

canves2d::canvas2d ([[double rt[2], double lb[2],] char* m])

Canvas constructors are overloaded to provide various opt,ions for initializing the graphics display en-
vironment. The argument (char+ m) requires some explanation. Three types of “real-time,” interactive
transformations are incorporated into canvases: rotations, dilations, and translations.7 The argument m is
a three-character string (excluding the terminating null character) which specifies the mode in which these
transformations are to be carried out. For instance, rotations are carried out relative to three independent
directions. If the first character in m is ‘W’, this means that these directions are to remain fixed in space
(or, in graphics terminolog_v, in the “world”); if it is ‘0’ then the rotation axes remain fixed relative to the
objects being rotated. In the latter case, dials connected to the rotation node of a canvas (via one of the
.cormRot methods discussed below) will act like yaw, pit,ch, and roll controls. If ‘R’ is specified, however,
t,he axes of rotation will remain fixed “in space” regardless of the orientation of the objects.

A similar criterion is set up with regard to translations, which also require specification of three axes:
using the third character in m. The middle character controls the dilation, or “scaling,” operation: if ‘0’ is
chosen, then the invariant point of the dilations remains fixed in the object; if ‘W’, in the world.

The argument char* v, if present, gives the user the option of specifying an orthographic rieu,, rather
than a perspective one: Any string not beginning with the character ‘p’ ~ such as v = "orthographic"
.- will select the orthographic view. This will perform parallel projection of three-dimensional data onto
the screen.

If more than one canvas is declared, the arrays rt, lb, rtf, and lbb indicate the size and position of each
on the screen. The two components of rt and lb contain the relative acreen coordinates of the right-top and
left-bottom vertices of the ce.nvas. Relative screen coordinates are always in the range +I in each direction:
t,heg. indicate position as though the screen were mapped onto { (s,y) 1 /zi < 1, Iyi 5 1 }. For example, using
rt = (1: 1) and lb = (0,O) will put th e viewport in the upper right hand portion of the screen. If a rectangular
viewport is requested, the one actually constructed will enclose the largtst square that fits into this rectangle,
with top right vertices matching. The three-dimensional arrays rtfand Ibb are similar; their third argument
indicates “depth,” and sets t,he positions of the forward and backward clipping planes, which determine
depth cueing.

Default declarations use no arguments. A canvas constructor assumes that the declared canvas will be
the only one on the screen and give it maximum size. Data will appear in perspective, and depth cueing will
be activated with forward and backward clipping planes set at il.

‘Thcrc is artudly on< mo~c, but rc’U save it Ior later.

15

3.2 Transformations

void canvas3d::connRot (int dielX, [char* IabelX,]

int dialY, [char* IabelY,]

int dial2 [, char* label2])

::connTrens (int dielX, [char* IabelX,]

int dialY, [char* IabelY,]

int dielZ [, char’ IabelZ])

::connFrom (int dial [, char* label])
void canvas2d::connRot (int dial [, char* label])

::connTrans (int dialX, [char* IabelX,]

int dialY [, char’ IabelY])

void { cenvas3d 1 cenvas2d }::connScale(int dial [, char* label])

These functions connect the transformation nodes of a canvas to the PS39O’s dial box so that thry can
be carried out interactively by turning knobs. As their uames suggest, .connRot and .connTra~~s connect
dials to a canvas’~ rotation and translation nodes respectively, and .cannScale connects a dial to dilation.
The integer arguments determine the dials associated with “x,” “ y>” and “z” rotations -- or just “z” rotations,
in t,hc two-dimensional case and must lie between 1 and 8, inclusively; the string arguments determine
the labels, limited to eight characters, which will appear in t~he LED displays above the associated dials. If
labels arc not specified, defaults will be used. An input dial integer less than 1 or larger than 8 will result in
no transformation capability about the axis for which the dial number was intended. This is actually useful
when it is desired to select fewer than all three axes for either rotations or translations.

.co~mScele requires only one integer argument for selecting the dial number to be used for dilution, as
the transformation is carried out uniformly in all three dimensions. It is important to remember that the
origin used for the scaling tranformation is determined by the mode argument, char* m, used wh?n declaring
a variable of type canvas3d.

The .connFrom method, available only t,o canvas3d variables, allow the user to “move through” t,hr
data by changing the point of observation. Any rotation of the selected dial will result in the simulated
movement of the user along the line connecting the original viewing position and the world axis syst,em
origin. If the viewing position is moved beyond the origin (the center of the display region), the data will
apear to flip from front to back.’

3.3 Building displayable objects

char’ cenvas3d::startFrame(double x, double y, double z [, double c])

::startPts (double x, double y, double e [, double c])

::stertVF ([double s,] double p[3], double v[3] [, double c])

void canvas3d ::eddToFkame ([char* 11,] double x, double y, double z)

::joinToFreme ([char’ n,] double x, double y, double z)

::addToPts ([char’ n,] double x, double y, double z)

BThis ir B flaw which 4, bc rcpaircd cventudy.

16

::eddToVF ([char* n,] double p[3], double v[3])

char’ canvesZd::startFrame (double x, double y [, double c])

::startPts (double x, double y [, double e])

::startVF ([double s,] double p[Z], double v[2] [, double c])

void cenvas2d ::addToFreme ([char’ n,] double x, double y)

::joinToFrame ([char’ n,] double x, double y)

::addToPts ([char’ II,] double x, double y)

::eddToVF ([char* n,] double p[2], double v[2])

void { cenves3d / cenvas2d }::makeAxes(double m[6], double d[3] [, double c])

At the time of writing, canvases support displayable objects modelled as wireframes, point sets, vet-
tar fields, or axes. Displaying data es clusters of points is accomplished through the functions .startPts

and .addToPts. The first initializes the abject, and the second adds members to it. .startFrame, ed-

dToFreme, and .joinToFrame perform similar offices for u&frames. .addToFrame assumes the point
given is t,o be attached to the frame via an edge; .joinToReme makes the edge invisible: it “lifts the pen,”
as it were, before moving to the new point. Thus, a wire frame need not appear connected.

The .startXXX methods return a string which is,,the internal name of the object being created. One
application of this, the removal of an object from a canvas, was illustrated in lint 51 of the Section 2.2
listing. Another is given in the methods above: Normally, after an object is started, calls are made to
.addToXXX methods in order to continue its construction, as don? in lines 231.239 of Section 2.2. If that
process is interrupted, and another object is started, we can still return to t,hc original one by insertiug
(the token containing) the valw returned by a .startXXX function as the char* n argument. This is
illustrated in the fragment, below.

canvas3d zlorfik;
char* firstThing;
char* secondThing;
double x. Y. 2;

firstThing = slorfik.startFrame(0.. 0.. 0.);
secondThing = zlorfik.startFrams(I., 1.. 1.);
zlorfik.addToFrame(x, y. z 1; // This refers automatically to

// the most recently started frame
zlorfik.addToFrams(firstThing, x, y. z 1;
zlorfik.joinToFrame(secondThing, 2.0*x, 2.O+y, 2.0*2);

Axes, built, by the .makeAxes funclions, are useful for orientiug the observer wit,h respect to data. The
two required arguments are arrays which provide the ranges associated with each axis (double* m) and the
spacing between tic marks (double* d). Their usage was illustrated in alI Swtion 2, for example in lines
16-19 of Section 2.1. Of course, the last [two) components of double* d (doable’ m) is (ax) ignored by,
and therefore not necessary for, canvas2d variables.

The optional argument double s that appears in the vector field function .startVF is a muhiplicative

17

“scale factor” for the vectors which serves to relate the units of the vector field to those of the underlying
space. Its absence is equivalent to setting s = i.

The argument double c refers to color. BLUE, MAGENTA, RED, YELLOW, GREEN and CYAN are automat-
ically available as defined tokens, and can be inserted into this slot. Other hues can be obtained through
interpolation, as in “O.l*GREEB + O.O*YELLOW.”

3.4 Miscellany

void cnnvas3d::setRange(double xMin, double xMax,
double yMin, double yMex,

double eMin, double eMax)

void canvas2d::setRange(double xMin, double xMax,

double yMin, double yMex)

void { cenvas3d 1 canvas2d }::setRange(double m[6])

::include(char’ n)

::remove(char’ n)

void canvas3d::connAnimate(char g, int s)

void canves2d::connAnimate(int s)

Besides arranging the configuration of th? axes: the .makeAxes methods listed in Section 3.3 alert the
canvas to the range of values it can expect. If necessary, the canvas then scales data so that all directions
visually look as though they had comparable dynamic ranges. The .setRenge methods provide a xay of
doing this without drawing axes. The argument double* m is exactly the same as iu Section 3.3; as before,
the last two components are not needed for canvasld variables.

After an object is created in one canvas, it can be displayed in other canvases by using the .include

funclion. Conversely, .remove will remove objects from cauvases, as was done in lines 51-52 of Section 2.2.
.connAnimate allows the user to activate an animated rotation about an axis of choice, determined by

the argument char g, which should take on t,he values ‘x’, ‘y’, or ‘z’. The other argument, int s, controls
the rotation speed: a value of 1 causes the animation to operate at a speed of about 60 degrees per second,
which is the fastest available; any other value will produce a slower rotation. The animat,ion is begun by
placing thr locator puck on the tablet and pressing its green button, and it is stopped by pressing the red
one.

4 Raster Graphics

The class canvssRas, unlike its cousins, canvaa2d and canvas3d, is designed for pixel operations. Specif-
ically, it can be used to generate color-coded contour maps of functions over R’. As was demonstrated in
Section 2.4, the user specifies au arbitrarily named function

void func(doublet x, double* y. doublet I, double* g, double* b)

18

which accepts an (x, y) roordinate pair as input and produces its red-green-blue color code as output. The
values must all satisfy II 5 *r, *g, rb < 255. Pixel operations (1~ not updated, so canvasRas variables should
not overlap anything else appearing on the screen, including the VAX-produced messages displayed in the
terminal emulator plane and the cursor.

4.1 Declarations

canvasRes::ca~~vasRes([double rt[2], double lb[2]])

Instancing a canvasRas variable with arguments determines its position on the screen. (For examplr, see
line 83 on page 14.) As before, rt and lb contain normalized screen coordinates, lying between _i~I. If the
default option (no arguments) is used: then the canvas w-ill fill the entire available area, which means that it
should be the only canvas in the program.

4.2 Scanning the function

canvasRas::setX(double lo, double hi)

::setY(double lo, double hi)

::scan(RASTER-FUNC scanFunction)

The drsircd image is rendered on the screen by setting a domain in R2 and then invoking .scan. The
methods .setX and .setY determine the region to be scanned. Invoking .scan starts the actual data
processing. The argument scanFunction is the name of the user-defined function described above. Usage
was exemplified in lines 10 and 86 of Sec.2.4.

4.3 Miscellany

cmvasRas::erese()

::fullErase()

Invoking the .erase method will clear a single rast,er CAILY~S; invoking .fullErase will clear all raster
canvases on the screen.

19

